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Stirring and transport enhancement in a
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The transport of fluid from a recirculation region adjacent to a free surface is studied
using a numerical method validated with experimental flow visualization. The flow is
an example of a liquid film coating process, and consists of two counter-rotating rolls
placed side-by-side and half-submerged in a bath of fluid. In the gap between the
rolls a recirculation zone exists just below the free surface, around which the flow
splits into two films. Fluid recirculating for long periods has been identified as a
source of coating defects, so this paper considers a possible method of inducing
stirring. The flow is modulated by driving one of the rolls through a Hooke’s joint,
which delivers a well-characterized periodic perturbation to the roll speed. In response
to this speed modulation, the free surface undergoes a periodic change in position
and shape which drives an exchange of fluid between the recirculation region and the
surrounding flow. The amplitude of the free-surface motion is strongly dependent on
modulation frequency.

The dynamics of the free surface preclude a quasi-steady approach, even in the
small-frequency limit, and so a fully time-dependent analysis based on the finite
element method is employed. Trigonometric temporal interpolation of the finite
element data is used to make passive tracer advection calculations more efficient, and
excellent agreement is seen between simulation and experiment. Computations of the
stable and unstable invariant manifolds associated with periodic points on the free
surface reveal that the exchange of fluid is governed by a self-intersecting turnstile
mechanism, by which most fluid entrained during a modulation cycle is ejected later
in the same cycle.

Transport over several cycles is explored by observation of the evacuation of passive
tracers initially distributed uniformly in the recirculation zone. Results demonstrate
the persistence of unmixed cores whose size is dependent on the modulation frequency.
By considering the percentage of tracers remaining after a fixed number of cycles,
contours in frequency–amplitude space show that for each modulation amplitude
there is a frequency which produces the most effective transport, with up to 80 % of
tracers removed by a modulation which produces only a 5% change in film thickness.
Finally it is shown how modulation of both rolls at slightly different phases can reduce
the film thickness variation to about 1 % while maintaining the level of transport.

1. Introduction
Two-dimensional steady laminar fluid flows in bounded domains often feature

regions of recirculation in which fluid is trapped and separated from the rest of the
flow. Under steady conditions eddies persist since fluid may not cross their bounding
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streamlines; passive ‘tracer’ particles placed within a recirculation would execute non-
chaotic closed orbits (Aref 1984). However, there are several ways in which such
steady flows can be modulated in time to produce chaotic fluid motion and an
interaction between fluid within a recirculation and that outside it. Indeed, following
Aref’s (1984) seminal work on ‘stirring by chaotic advection’ an extensive body of
literature dedicated to the theoretical, computational and experimental study of this
phenomenon has been accumulated. For a discussion of earlier work on mixing, see
for example Ottino (1989).

Two of the most popular geometries studied are the journal bearing (e.g. Swanson
& Ottino 1990; Kaper & Wiggins 1993; Kumar & Homsy 1996; Galaktionov,
Anderson & Peters 2002) and the rectangular double-lid-driven cavity (e.g. Chien,
Rising & Ottino 1986; Anderson et al. 2000a). In both of these systems the flow is
driven by the tangential motion of two boundaries, i.e. the rotation of the inner and
outer cylinders or the parallel translational motion of the two lids, and chaotic flow
can be achieved by varying the speeds of these boundaries periodically in so-called
modulation ‘protocols’. Protocols can be discontinuous, involving the alternating
steady motion of one boundary then the other (e.g. Swanson & Ottino 1990), or
continuous, for example the sinusoidal modulations of Kaper & Wiggins (1993). In
both cases the geometry of the domain does not vary with time.

An alternative means of generating chaos is to modulate the shape of the domain
through non-tangential motion of one or more boundaries. This was first done in
the ‘baffled cavity flow’ by Jana, Tjahjadi & Ottino (1994). The flow consisted of a
rectangular driven cavity into which a number of baffles were periodically inserted and
withdrawn. The presence of the baffles was found to improve mixing greatly, and led to
innovations in the design of screw extruders (Tjahjadi & Foster 1996; Yao et al. 1997).
More recently, Finn & Cox (2001) studied the stirring effect of a circular cylindrical
rod moving on a cycloidal path through a static cylindrical container of fluid.
Under the assumption of two-dimensional Stokes flow, they used a complex-variable
formulation to obtain an analytical representation of the flow field. Again, this
geometric modulation of the domain was found to give good mixing.

A further example, of particular relevance to the present work, is provided by
Horner et al. (2002), who studied the flow in a rectangular cavity with three solid
sides and one side open to an annular channel; the perturbation to the steady flow
was caused by the rotating inner cylinder. Two types of periodic flow modulation were
explored: a purely temporal one produced by variation of the speed of the circular
inner cylinder, and a spatial one effected by introducing ribs onto the surface of the
cylinder which was then rotated at constant rate. The exchange of fluid between the
cavity and the channel was described in terms of the dynamics of lobes bounded by
intersecting segments of invariant manifolds associated with the separation points in
the cavity. These ideas are also applied in the present study, and hence the work of
Horner et al. (2002) will be referred to again in later sections. Recently Wierschem &
Aksel (2004) have observed experimentally fluid transport from an eddy in the trough
of a sinusoidal substrate over which a liquid flows. The flow is very similar to that of
Horner et al. (2002) except that the time-dependence of the flow comes from waves
on the surface of the film.

The problem of interest here features aspects of both the fixed-domain modulated-
speed flows and the geometrically modulated flows, since it involves a flow between
two (solid) rotating cylinders and includes a free surface whose position and shape
change in response to the speeds of the cylinders. The flow arises in the coating
industry, where it is sometimes known as ‘inlet-flooded forward roll coating’, and it
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Figure 1. Schematic showing a cross-section of the experimental rig (a), and the computational
domain (b). Roll C rotates at constant speed, while the speed of roll M is modulated.

has been analysed both in the steady state (e.g. Coyle, Macosko & Scriven 1986;
Gaskell, Savage & Thompson 1998b) and to predict the onset of interfacial instability
(e.g. Coyle, Macosko & Scriven 1990). Figure 1 shows the experimental realization of
the flow and the associated computational domain. The rolls are half-submerged in a
bath of liquid and counter-rotate to produce a narrow ‘bead’ of liquid in the small gap
between them. A thin film is drawn out of the bead by each roll, and under normal
operating conditions a substrate would be wound around one of the rolls so that
it is continuously coated. Generally, a recirculation zone is present in the ‘film-split’
region, as indicated in figure 1. Regions of recirculation are undesirable in coating
flows (Gaskell et al. 1999; Gutoff 1993), however, since fluid trapped inside them can
degrade and form solid deposits whose later ejection is detrimental to the quality
of the finished coating. In some cases it may be possible to redesign the geometry
of the coater to reduce the occurrence of such features (Noakes et al. 2002), but
where this is not possible it is of interest to investigate possibilities for inducing fluid
exchange between the recirculation region and the surrounding flow. The method of
flow modulation is one potential means of achieving this.

From a fundamental point of view, a particularly intriguing aspect of this flow is
that the free surface – whose response to the modulation is unknown beforehand –
forms part of the boundary of one of the eddies in the recirculation zone. The
implications of this are discussed in § 2, after which § 3 describes the experiments and
§ 4 the numerical method. The main results are given in § 5, with issues relating to the
industrial context of the flow discussed further in § 6. The paper is concluded in § 7.

2. Flow features and invariant manifolds
The flow structure in steady-state inlet-flooded forward roll coating has been

previously studied by, for example, Wicks et al. (1995) and Gaskell et al. (1998b).
Figure 2 presents streamlines calculated using a steady-state version of the finite
element method described in § 4.2. For the flow parameters used here, the flow always
features three hyperbolic separation/attachment points, A, B , C, on the free surface,
along with a single interior hyperbolic point, D, and two elliptic stagnation points
(shown as black circles in the figure).

When the roll speeds are equal (S = 1), the flow is found to be symmetrical and the
interior saddle point is connected to each of the free-surface saddle points, producing
two joint eddies attached to the free surface. In the general case, however, the eddies
are disjoint: one is attached to the meniscus while the other lies entirely within the
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Figure 2. Streamlines calculated using a steady-state version of the finite element method
described in § 4.2. The flow parameters are given in table 1, with the speed ratio given by
(a) S = 0.8, (b) S = 1, and (c) S = 1.2. Following the convention of figure 1, S is the ratio
of the right-hand roll’s speed to that of the left-hand roll. The black circles indicate the rough
position of elliptic stagnation points.

domain and is bounded by a homoclinic streamline passing through the interior
saddle point. In this asymmetric situation a small amount of fluid from upstream
winds its way between the eddies and exits on the faster moving roll. In the roll
coating literature, this fluid path is referred to as a ‘transfer jet’ (Gaskell et al. 1995;
Summers, Thompson & Gaskell 2004).

When the speed of roll M (the right-hand roll in figure 2) is modulated, the free
surface moves alternately towards and away from the ‘nip’ (the point of minimum
separation between the roll surfaces), and the area (i.e. volume per unit axial length)
of the recirculation zone changes correspondingly. It is evident therefore that the free
surface motion drives an exchange of fluid between the recirculation region and the
surrounding flow. The question of interest here is: is the fluid exchange limited to
that required by the volumetric change, or are there modulations for which a greater
degree of fluid transport can be induced?

In analyses of fluid transport, perhaps the most important conceptual tool is the
idea of stable and unstable ‘invariant manifolds’ in the flow. The behaviour of such
manifolds and the role they play in the fluid transport mechanisms for periodic, quasi-
periodic and aperiodic flows have been analysed and described in detail in a number
of works, e.g. Rom-Kedar & Wiggins (1990), Rom-Kedar, Leonard & Wiggins (1990),
Wiggins (1992), Beigie, Leonard & Wiggins (1994), Malhotra & Wiggins (1998), and
Horner et al. (2002). A brief explanation is given here in the context of the present
free-surface flow, to aid the understanding of the results presented later.

In snapshots of a flow, invariant manifolds appear as smooth curves having the
property that each point on such a curve remains on that curve, as it evolves, for
all time. Therefore fluid cannot cross an invariant manifold except by molecular
diffusion, which is regarded as negligible throughout this work. A stable manifold is
one whose constituent points approach some fixed or periodic point (e.g. points A,
B , C or D) as time advances, whereas the points on an unstable manifold approach
its fixed/periodic point as time flows backwards. Each of the hyperbolic points in
figure 2 has both a stable and an unstable manifold, though the stable manifolds of
points A and C and the unstable manifold of point B each have a branch which lies
within the ambient air and does not therefore form part of the domain of interest.
Following a similar notation to Horner et al. (2002), the unstable and stable manifolds
of each point will be denoted Wu

B , Ws
C , etc. Under steady conditions, certain branches

of the stable and unstable manifolds coincide to produce the separating streamlines
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Figure 3. Illustration of the tangling of stable and unstable manifolds and the turnstile
mechanism of transport into and out of the region R0 bounded by β(t). (a) A small-amplitude
perturbation, featuring a simple turnstile; (b) an example of a self-intersecting turnstile, which
is the expected structure when the free surface undergoes a large displacement.

shown in figure 2. As can be seen, the free surface itself is formed from the unstable
manifolds associated with points A and C (and the coinciding stable manifold of
point B).

When the free surface moves in response to the roll speed modulation, the three
fixed points A, B , C become periodic points A(t), B(t), C(t) which move along the
free surface but satisfy A(t +T ) = A(t) etc. for all t , where T is the modulation period.
Likewise, the point D(t) executes a periodic orbit but is not restricted to the free
surface. Since the free surface is a material interface, any points on the surface must
stay on it as it moves, and so the manifolds Ws

B(t), Wu
A(t) and Wu

C(t) continue to lie
along the free surface for all time. However, the stable and unstable manifolds which
are not constrained along the free surface will no longer coincide, but will instead
intersect (infinitely) many times to form a complicated (yet structured) ‘tangle’. Since
incompressible velocity fields yield non-dissipative advection equations, tangling of
the manifolds occurs for any finite amplitude of the periodic modulation (Summers
1995). An example based on the eddy between points B and C in figure 2(c) is shown
in figure 3(a). Several features of such tangles have been defined in the literature cited
above. First, the points at which the manifolds intersect fall into two categories. A
‘primary intersection point’ (p.i.p.) is one which is connected to B(t) and C(t) by a
segment of Wu

B(t) and a segment of Ws
C(t) which do not intersect at any other point.

Any other intersection is referred to as a ‘secondary intersection point’ (s.i.p.). Any of
the p.i.p.s can be used to define a time-dependent boundary, β(t), of an interior region,
R0, and the chosen p.i.p. is referred to as a ‘boundary intersection point’ (b.i.p.). In
figure 3(a), β(t) is indicated by the thick lines, and consists of the two segments of
Wu

B(t) and Ws
C(t) plus the segment of free surface between B(t) and C(t).

The segments of Wu
B(t) and Ws

C(t) between each pair of adjacent p.i.p.s define a
‘lobe’ and, as can be seen in the diagram, the lobes lie alternately inside and outside
R0. There are two ways to think about the lobe structure. On the one hand, since
the lobes are bounded by invariant manifolds, fluid which lies within a lobe remains
within that lobe for all time. Thus, after each period, each lobe moves along β(t)
from B(t) to C(t) via the b.i.p. However, if one plots the two manifolds at the same
stage of each period, they will look the same. Therefore, when viewed periodically,
the manifolds and the lobes can be seen as a geometric structure through which fluid
flows. For labelling purposes, the latter notion is more useful, since the same label
can be applied to whichever lobe occupies a particular region of the domain at a
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particular phase of the modulation. For instance, in the pictured example, fluid lying
in the interior lobe labelled L̄D at t = t0 moves to occupy the lobe labelled L′

D at
time t0 + T . The parcel of fluid is still bounded by the same segments of Wu

B(t) and
Ws

C(t), but the label of the lobe has changed because the lobe now occupies a different
position in the manifold structure. Similarly, the exterior lobe L̄E �→ LE . With this in
mind, the importance of lobes LE and LD can now be seen, because fluid which lies
within the exterior lobe LE will lie within the interior lobe L′

E after one modulation
period. Similarly, fluid in the interior lobe LD will occupy the exterior lobe L′

D . In
other words, fluid will be transported into and out of R0. Only fluid lying in lobes LE

and LD can enter or leave R0 and for this reason these lobes are referred to as the
entraining and detraining ‘turnstile’ lobes. Calculating the area of these lobes gives
the rate of fluid exchange – see the papers cited above for more detail.

Readers familiar with the oscillating vortex-pair flow considered by (among others)
Rom-Kedar et al. (1990) and Beigie et al. (1994) will note that the eddy between
B and C in figure 2(c) and its manifold structure in figure 3(a) are topologically
equivalent to one half of the vortex pair. The symmetry of the vortex flow prevents
the manifolds lying in the symmetry plane from tangling; these manifolds remain
stationary for all time. The equivalent section of R0 in the present flow is the free
surface, which, though composed of stable and unstable manifolds, cannot produce
tangling due to its being a material interface. The key difference here is that the
free surface is moving inwards and outwards; indeed this is the dominant driving
mechanism for fluid transport in the present study. This ‘direct’ perturbation of the
eddy region is potentially capable of producing very large disturbances, and since
the eddy region is relatively small (particularly when compared with the open cavity
flow of Horner et al. 2002), it is possible that fluid which is entrained into R0 might
also be detrained within the same period of modulation, as the free surface returns
to its original position. This situation would result in a ‘self-intersecting turnstile’, as
sketched in figure 3(b) – see also Rom-Kedar & Wiggins (1990) or Wiggins (1992). In
this case the detraining turnstile lobe overlaps the entraining lobe.

3. Experimental apparatus and method
Experiments were performed on a modified coating rig (Gaskell, Kapur & Savage

2001). This consisted of a high-precision twin-roll apparatus, illustrated in cross-
section in figure 1, composed of two stainless steel rolls (labelled C and M for
‘constant’ and ‘modulated’) of length 100 mm and radius RC = RM = R = 25.24 mm,
ground to a fine finish of average roughness r.a. < 0.4 µm and positioned side by
side. Each roll is mounted in a precision housing, with a small degree of pre-load
applied to the pair of angular bearings to minimize runout. The metering roll and
drive are fitted on a horizontal slide enabling the gap, 2H0, to be set with feeler
gauges to 400 ± 10 µm, accounting for a roll eccentricity within ±5 µm. The two rolls
are immersed in a bath of fluid so that the fluid level reached the centre of the rolls;
this ensured that the system remained ‘fully flooded’ during the experiments.

Both rolls were driven by (Farnell) DC motors with a 300:1 reduction gearbox and
an opto-tachometer interfaced to a computer for direct speed readout. A Hooke’s (or
‘universal’) joint provided a simple and efficient means of modulating the speed of roll
M . The drive arrangement is shown in figure 4; the motor is mounted on a pivoted
bracket such that the angle, θ , between the driving and driven shafts can be varied
between 0 and 75◦. The value of θ determines the magnitude of the perturbation. With
reference to figure 4, ΩC and ΩD are the (constant) angular velocities of the shafts
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Figure 4. The universal (or ‘Hooke’s’) joint used to modulate roll speed, and a plan view
of the drive arrangement.
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Figure 5. The modulation produced by the Hooke’s joint inclined at various angles. Note
that for ease of comparison, the curves have been shifted along the time axis so that in each
case S = 1 at time zero.

driven by the two motors, while ΩM (t) is the angular velocity of the modulated roll at
time t . The speed ratio of the two rolls is given by the formula (Hall, Holowenko &
Laughlin 1961)

S(t) =
ΩM (t)

ΩC

=
S̄ cos θ

1 − sin2 θ cos2 ΩDt
, (3.1)

where S̄ = ΩD/ΩC is the speed ratio of the two motors, which is also the average
roll speed ratio. The range of S produced by (3.1) is S̄ cos θ � S � S̄ sec θ , and
the frequency of the modulation is ω = 2ΩD since each revolution of the drive
shaft produces two complete modulation cycles. Plots of modulations produced using
different values of θ with S̄ = 1 are shown in figure 5, where, for ease of comparison,
the phase shift

ΩDt =
1

S̄
arccos

(1 − cos θ)1/2

sin θ
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R = 0.02524 m ρ = 860 kgm−3 Re = 0.021
H0 = 2 × 10−4 m µ = 0.7 Pa s Sr = 0.028
L = 2.247 × 10−3 m γ = 0.03 N m−1 Bo = 1.420

UC = 7.5 × 10−3 m s−1 ω = 0.594 rad s−1 Ca = 0.175

Table 1. Summary of dimensional and dimensionless parameters corresponding to the
experimental conditions. The working fluid is a high-viscosity oil.

has been applied so that S = 1 at t = 0 in each case. For small θ , the response
is approximately sinusoidal, as confirmed by a Maclaurin expansion of (3.1), which
gives S = S̄(1 + 1

2
θ2 cos ωt + O(θ4)). However, as θ increases, a distinct asymmetry is

visible in the response.
The evolution of the flow within the bead of fluid was highlighted using dye

injection. A small hypodermic needle was mounted in a clamp above the free surface.
The clamp was in turn mounted on a piece of spring steel so that by pressing gently
on the housing the tip of the needle could be inserted into the fluid through the free
surface. Prior to injection, a pendant drop was formed on the end of the needle to
minimize the duration of the disturbance to the flow.

The fluid bead was visualized using a CCD camera (Panasonic 0.08 lux model
WV-BP310B) attached to a monocular zoom microscope (Meiji Techno Company).
A transparent end plate was fitted flush to the end of the rolls to prevent curvature
of the fluid meniscus distorting the flow field, and the microscope was focused some
5mm from the edge of the roll to minimize distortions due to three-dimensional flow
in the vicinity of the end plate (Gaskell, Innes & Savage 1998a). The bead was lit using
a halogen light source fitted with twin fibre-optic light guides (Olympus Highlight
3000), the image was recorded onto S-VHS video tape and captured in digital
format using a Silicon Graphics INDY workstation. A list of the fluid properties
and other parameters corresponding to the experimental conditions is given in
table 1.

4. Computational method
4.1. Governing equations

The liquid is taken to be Newtonian, with constant and uniform viscosity, µ, density,
ρ, and surface tension, γ . The ambient air is assumed to be inviscid with constant
pressure, and its flow is therefore not modelled here; the ambient pressure merely
provides a datum from which to measure the liquid pressure. A suitable length scale for
the problem is given by L =

√
RH0, which has been used before in lubrication analysis

(Pitts & Greiller 1961), but is also roughly the length of the recirculation region for
the physical parameter values considered. The velocity scale is U = UC = ΩCR, the
peripheral speed of the constant-speed roll. Scaling pressure by µU/L and time by
the modulation period, T = 2π/ω, leads to the following dimensionless form of the
Navier–Stokes and continuity equations:

Re (Sru̇ + u · ∇u) = −∇p + ∇2u + (Bo/Ca) ĝ, (4.1)

∇ · u = 0, (4.2)

where p is pressure, u = (u, v) is velocity, u̇ = ∂u/∂t , ĝ is a unit vector in the
direction of gravity, and the Reynolds, Strouhal, Bond and capillary numbers are
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given respectively by

Re =
ρUCL

µ
, Sr =

L

UCT
, Bo =

ρgL2

γ
, Ca =

µUC

γ
. (4.3)

The experimental values of these dimensionless groups are given in table 1.

4.2. Finite element method

Motivated by the success and prevalence of the finite element (FE) method in model-
ling steady-state coating flows, a time-dependent implementation of the technique is
adopted here. The formulation employed is a Galerkin weighted residual approach
based on that described in detail for steady free-surface flows by Kistler & Scriven
(1983). The computational mesh is constructed in the same way as that of Coyle
et al. (1986), but with more elements to provide the necessary resolution of the velocity
field (Souvialotis, Jana & Ottino 1995). Six-node triangles instead of quadrilaterals
are also chosen to facilitate the tracking of passive tracer trajectories through the
mesh.

On each element, the velocity and pressure are represented in terms of nodal
quantities by means of biquadratic (Qj ) and bilinear (Lk) interpolation functions, i.e.

u(ξ, η) =

6∑
j=1

ujQj (ξ, η), p(ξ, η) =

3∑
k=1

pkLk(ξ, η), (4.4)

where uj and pk are the nodal values, and (ξ, η) are local coordinates defined on a
‘standard’ element which is mapped into each physical element. The free surface is
parameterized using a set of linear ‘spines’ having known but adjustable base points
and orientations, with the position of each mesh node on the free surface given by
its distance, hi , along a spine from the spine’s base point (Kistler & Scriven 1983).
The base points lie either on a roll surface or on a special spine connecting the roll
surfaces (see Coyle et al. 1986), and the unknown distances hi – usually referred to
as ‘heights’ – are determined by application of the kinematic condition along the free
surface (see below).

Since the modulations considered here are slow, and therefore temporal gradients
in u, p and hi are small, a backward Euler scheme is sufficient to discretize time
derivatives. At each timestep the nonlinear algebraic weighted residual equations are
solved for updated spine heights and nodal values of u and p by Newton iteration.
Note that since the computational mesh moves in response to the free-surface motion,
the material derivative in the weighted residual form of (4.1) must be modified to
account for the relative motion of the liquid and the mesh (Jimack & Wathen 1991).
Hence, in discretized form, (4.1) becomes the following momentum residual equation:∫

χ

[QjRe(Sru̇+(u −Srẋ) · ∇u)+∇Qj · σ −Qj (Bo/Ca) ĝ] dχ −
∫

∂χ

Qj n̂ · σ ds = 0 (4.5)

where σ is the dimensionless stress tensor with components σαβ = −pδαβ + ∂uα/∂xβ +
∂uβ/∂xα , n̂ and s are the unit normal to and arclength along the boundary, ∂χ , of
the domain, χ , and ẋ =

∑
ḣi∂x/∂hi is the mesh velocity. Typically 3 or 4 iterations

are required to reduce the L2 norm of the residuals to below 10−10 at each timestep.
As explained in the next section, the FE system must be solved over two modulation
periods, and so the largest acceptable timestep size was determined by repeating
the computations with successively halved timesteps until the nodal velocities and
free-surface positions calculated using the two smallest timesteps differed by less than
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10−3 % after two modulation periods. The larger of these two timesteps was then
taken to be the largest acceptable timestep.

The boundary conditions imposed are as follows. On the roll surfaces, the no-slip
condition yields

u = t̂ on roll C, u = S(t) t̂ on roll M , (4.6)

where t̂ is the unit tangent to the appropriate surface. On the free surface the tangential
stress vanishes, while the normal stress is balanced by surface tension. Taking pressure
to be relative to the ambient pressure, these conditions are encapsulated in the natural
boundary condition

n̂ · σ =
1

Ca

d t̂
ds

, (4.7)

which is convenient for insertion into (4.5). As discussed in § 2, the free surface is a
material interface, and therefore fluid may not cross it. This fact leads to the kinematic
condition

(u − Srẋfs) · n̂ = 0, (4.8)

where xfs represents the coordinates of a point on the free surface. Following the
usual Galerkin approach, equation (4.8) is weighted by Qj and integrated over the free
surface to provide the equations which determine the spine heights at a given timestep.

The outflow planes are prescribed to be perpendicular to the rolls, and the ‘free
boundary condition’ of Papanastasiou, Malamataris & Ellwood (1992) is used to
allow for the changes in film thickness and flow rate resulting from the modulation
of roll speed. This approach simply involves calculating the boundary integral in (4.5)
as it stands, using the current values of u, v, p and h along the outflow planes. (Note
that for this integral, n̂ refers to the normal to the outflow plane.)

Finally, the inlet boundary is positioned at y = 0, the point of minimum separation
between the roll surfaces. Diffusion of momentum across this narrow gap is assumed
to be very rapid, such that the flow rate adjusts instantaneously to changes in roll
speed but the form of the velocity profile remains the same. Hence, following Coyle
et al. (1986), the velocity at the nip is derived from lubrication theory:

v(α, t) = 3
4
[1 + S(t) − 2λ] (α2 − 2α) + 1

2
(S(t) − 1)α + 1. (4.9)

Here λ is the dimensionless flow rate through the nip, and α is a transformed x

coordinate such that α = 0 on the surface of roll C and α = 2 on roll M (Coyle et al.
1986). Since λ is unknown a priori, it must be determined as part of the finite element
solution, and this can be achieved using the lubrication prediction for the pressure at
the nip:

p =
3π

16
√

2
[2(S(t) + 1) − 3λ] +

BoR

CaH0

ybath, (4.10)

where ybath is the position of the surface of the bath in which the rolls lie (in this
study ybath = 0 since the rolls are half-submerged). Equation (4.10) is coupled to the
FE system by replacing its left-hand side by the average of the nodal pressures at the
nip (Coyle et al. 1986).

4.3. Calculation of passive tracer trajectories

Central to the visualization and analysis of transport in modulated flows are the
trajectories of passive tracer particles, which provide a means of observing fluid
motion without influencing the flow. The trajectory, x(t), of a tracer is found by
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integrating the advection equation,

dx
dt

= u(x, t)/Sr, (4.11)

which is here achieved using a fourth-order Runge–Kutta scheme. Large collections of
passive tracers form the computational equivalent of a dye blob in an experiment, and
hence offer the potential for direct comparison between simulations and experiments.
Note that molecular diffusion is neglected here: the time scale for this effect to be
noticeable is assumed to be much larger than the modulation period (as borne out by
experimental observations). Since evaluation of the velocity field is computationally
expensive, for periodic flows it is desirable to decouple the trajectory calculations
from the calculation of u(x, t), thus allowing velocity data from just one period of the
modulation to be re-used in the integration of (4.11) over many periods. This does
however raise the question of how to interpolate between the available ‘snapshots’ of
the velocity field to obtain u at arbitrary times.

In the baffled cavity flow mentioned earlier, Jana et al. (1994) used the boundary
element method and took advantage of its low memory requirements to store in
arrays the boundary information corresponding to several intermediate positions of
the moving baffles. They were able to do this because the motion of the baffles was
prescribed, and hence appropriate fluid velocities could be set at the moving surfaces.
This is not possible in the present problem since the free-surface position, shape and
motion in response to the modulation are not known in advance.

Anderson et al. (2000b) studied a cavity flow in which fluid inertia could not be
ignored. They therefore had to use a numerical method to determine u(x, t) and chose
the spectral element method for this. The result was a finite sequence of instantaneous
(unsteady) flow fields corresponding to different times. From this set, the flow field at
intermediate times was found using linear interpolation between consecutive solutions,
i.e. u(x, ti) and u(x, ti+1). A similar approach was adopted by Nishimura & Kunitsugu
(1997), who used the finite element method. They pre-calculated and stored all the
nodal velocity values required for each timestep throughout one period. For a recent
evaluation of such interpolation methods, see Mancho, Small & Wiggins (2006).

Here, an alternative means of temporal interpolation is employed. Since the
perturbation of the roll speed (3.1) is periodic and continuous, trigonometric
polynomials are a natural choice for interpolating between consecutive (unsteady)
velocity field solutions. This approach was suggested by Rosenfeld (1995, 1996),
motivated by the need for dramatic reductions in data storage requirements to allow
interactive calculations of streaklines for flow visualization. Though shown to be very
effective for the vortex-shedding flow past a cylinder and a pulsed flow through a
constricted channel, the method seems not to have been used in chaotic advection
studies.

In order to synthesize a finite element solution at arbitrary time t , one period of
the modulation is first ‘sampled’ by calculating FE solutions at N uniformly spaced
values of t throughout the period, i.e. at tj = j/N , j = 1, . . . , N . Any nodal or spinal
quantity, φ (representing u, v, p, h, etc.), can then be expressed approximately as a
truncated Fourier series,

φk(t) = 1
2
a

φk

0 +

M∑
m=1

{
aφk

m cos 2πmt + bφk

m sin 2πmt
}
, (4.12)

where k refers to a particular node or spine, M is the number of terms in the
series, and the coefficients, determined by a least-squares procedure, are given by (e.g.
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Mathews 1992)

aφk

m =
2

N

N∑
j=1

φk(tj ) cos 2πmtj for m = 0, 1, . . . , M, (4.13a)

bφk

m =
2

N

N∑
j=1

φk(tj ) sin 2πmtj for m = 1, 2, . . . , M. (4.13b)

In the above, φk(tj ) represents the value of quantity φ at node/spine k in the FE
solution corresponding to time tj . The coefficients aφk

m and bφk
m are calculated for each

nodal velocity and each spine height in the finite element mesh; the node coordinates
(xk, yk) are not interpolated directly because it was found to be more efficient to
interpolate the (far fewer) spine heights and then reconstruct the mesh from these as
required.

Each new computation to determine the coefficients aφk
m and bφk

m begins from the
corresponding steady-state solution with speed ratio equal to S̄. Hence there is always
a short transient as the flow accelerates from this state to the modulated state, and
so the recording of FE solutions to calculate aφk

m and bφk
m cannot begin immediately.

For the small values of Re considered here, it was found that one complete period of
modulation was ample time for the initial transients to decay and for a periodic state
to be established. Therefore the summations (4.13a, b) began in the second period of
modulation. Since there is a phase lag between the roll speed modulation and that of
the free-surface position, and since this is dependent on S̄, θ , Re and ω, the phase, ζ ,
of all modulations is for convenience defined with respect to the position of the ‘tip’
of the meniscus, i.e. the lowest point on the free surface, such that ζ = 0 when the
meniscus tip is closest to the nip.

Figure 6 shows example variations of velocity and spine height and the
corresponding interpolation via (4.12). The accuracy with which (4.12) captures the
behaviour of the FE system depends on both the number of terms in the series, which
governs the complexity of the behaviour that can be represented, and the number
of sample points tj used to determine aφk

m and bφk
m . It was found that the velocity

components at nodes close to stagnation points produced the most complex nonlinear
response to the modulation, see figure 6(c, d ), but even these were well represented by
series of just M = 6 terms, as can be seen by the close agreement in figure 6. While
a minimum of 2M + 1 sample points is needed to calculate the coefficients in (4.13),
the accuracy of (4.12) improves as N increases. In the results presented here, each
timestep of the FE system is used as a sample point, and N = 1000 was found to
give both a suitable timestep size (see § 4.2) and excellent agreement between (4.12)
and the FE data.

5. Results
5.1. Evolution of a dye blob

Figure 7 presents a comparison of experimental flow visualization and a corresponding
simulation of a blob of dye injected into the flow. In this flow, S̄ = 1 and θ = 30◦ and
the other parameters are as in table 1. Since it is very difficult to inject dye into the
domain without disturbing the flow, the initial points comprising the simulated blob
were determined from the position and shape of the real dye blob about one second
after its injection – this is shown in the top left image in figure 7. The GNU Image
Manipulation Program was used to blank out everything in the image except the dyed
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Figure 6. Illustrations of the response of the finite element system and the corresponding
trigonometric polynomials to a Hooke’s joint modulation with θ = 40◦. The FE data are
shown as + and the interpolated values as solid lines. Note that for reasons of clarity, not all
the FE data points have been plotted. (a) Height of a spine close to the meniscus tip location;
(b) height of a spine with base on the modulated roll; (c) and (d ) show horizontal, u, and
vertical, v, velocity components at two nodes close to the interior saddle point.

fluid, and the resulting image was then saved in (ASCII) PNM format, from which
it is straightforward to convert each pixel into an initial point in (x, y) space. This
collection of over 17 000 points was then advected forward in time using equations
(4.11). The phase at the time of injection was checked by observing the rotational
angle of the pins in the Hooke’s joint relative to the plane defined by the two shafts.

In the experiments, dye tends to linger on the free surface close to point B (see
figure 2) and is continuously drawn into the domain, creating a streak down the
centre of the eddy region. The mathematical (continuum) description of the flow
does not allow for this behaviour (see § 2), so to mimic the effect in the simulation a
fresh tracer is added to the domain close to point B at each timestep. This enables a
better judgement of the accuracy of the simulation with respect to the experiments,
by revealing more of the structure of the flow.

The overall visual agreement between the simulation and the experiment is excellent:
the simulation captures the winding effect of the right-hand eddy, the movement of
the interior saddle point, and the ejection of fluid along the free surface. The only
difference in the evolution of the blob is in the thin filament of dye which skirts
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(a) (b) (a) (b)

Figure 7. Comparison of simulation (b) with experiment (a) for the evolution of a dye blob
dropped onto the free surface. Time increases in steps of 1 s in the vertical sense. The period
of modulation is 10.57 s, so the images illustrate a little under one period. The phase in
the top left image is 0.78, and the Hooke’s joint is set at 30◦ with S̄ = 1, giving the range
0.866 � S � 1.154.
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Figure 8. A quantitative comparison of the results presented in figure 7. The plots show the
position of the advancing front of the dye blob as it winds around the right-hand eddy. The co-
ordinates xd and yd represent the positions of tangents to the dye blob as illustrated in the
schematics on the right. The predictions of the simulation are shown as black circles and the
experimental data as error bars.

the left-hand eddy before the main strand of ink follows – the simulation shows the
movement of the main strand, but does not feature the preceding dilute filament. This
is attributed to very slight errors in picking out the edges of the initial blob from the
greyscale image, i.e. there was a little ink at the boundary of the blob which was not
captured and converted into initial points for the simulation. Other comparisons with
repeated dye injection experiments at different phases show a similar agreement.

A more quantitative comparison of the simulation and experiment is given in
figure 8, where the position of the leading front of the dye blob in the right-hand
eddy is plotted against time. To avoid trying to locate a single point on the curved
blob edge, the position is represented by two tangents as indicated in the sketches on
the right of figure 8. The values xd and yd are dimensionless (scaled by L =

√
RH0 –

see table 1) and refer to the coordinate system indicated in figure 1. The experimental
values are found from the still images, and the error in identifying the edges of the
blob is estimated as ±2 pixels. Again, good agreement is seen, especially between the
xd values.

5.2. Visualization of fluid exchange

Having established that the numerical simulation provides a true representation of
the flow, figure 9 shows a sequence taken from a simulation which illustrates the fluid
exchange process for the case S̄ = 1 and θ = 30◦. For convenience, the steady-state
streamlines corresponding to S = 1 were used to define the eddy region. This region
was ‘seeded’ with tracers by constructing a uniform square grid of points extending
beyond the boundaries of the eddies, and then using the streamfunction to determine
which points lay inside each eddy. Discarding those points outside the eddy region
left about 60 000 tracers initialized inside the area of interest. The simulation was
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(a)

(e) (g) (h)( f )

(b) (c) (d)

(i) ( j) (k) (l)

(m) (n) (o) (p)

E1

E2

Figure 9. Numerical simulation of approximately 60 000 points initially uniformly spaced (via
a square grid) within the steady-state (symmetric) recirculation zone corresponding to S̄ = 1.
The phase increases in steps of 0.1 from 0.275 at (a). The Hooke’s joint angle was 30◦, giving
S as in figure 7.

then started at a phase (slightly greater than 0.25) at which the free-surface tip
location matched that in the steady state. At this phase, the free surface is moving
outwards, and as it does a finger of fresh fluid is drawn into the eddy region along
the free surface from the right (figure 9a–c; see also figure 10 for an experimental
visualization). For easy reference later, this strand of fresh fluid is designated E1. A
much smaller quantity of fluid also enters from the left – again along the free surface.
When the meniscus reaches its maximum extent and starts to recede again, fluid is
ejected from the eddy region along the free surface towards the modulated (right-
hand) roll (figure 9d–g). At this stage, the speed of the modulated roll is increasing,
and hence the right-hand film is increasing in thickness at the expense of the left-hand
film. This asymmetry produces a smaller ejection to the left along the free surface a
little later than the main ejection.
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Figure 10. Experimental images showing the incursion of fluid into the recirculation region
as the free surface moves outward. A ‘finger’ of fluid enters from right to left between the
right-hand eddy and the free surface, and is then drawn down the centre of the recirculation
zone. Once again, θ = 30◦ and S̄ = 1.

While fluid originally within the eddy region is being ejected, the fresh fluid E1

travels around the right-hand eddy such that at the beginning of the next modulation
cycle it lies ahead of the second influx of fresh fluid (figure 9h, i ), designated E2. As
a result, when E1 reaches the bottom of the eddy region, the interior saddle point D

(figure 2) is in such a position that E1 is split between the left- and right-hand eddies
(figure 9l ). When the right-hand portion of E1 reaches the free surface again it is
further split, with some of it leaving the eddy region (figure 9n). The snapshots in
figure 9(o) and (p) indicate that when the free surface moves inwards again (for the
second time), much of the fresh fluid E2 is ejected to the right. This would also have
been seen with blob E1 if the simulation had started at phase ζ = 0 rather than part
way through the outward stage of the free-surface movement.

An alternative means of visualization is to inject tracers into the flow upstream
of the eddy region and observe how they enter that part of the domain. This is
done in figure 11, in which a fresh line of tracers is initiated at the same upstream
location at each timestep of the simulation. The result is a continuous stream of
dyed fluid rather like the experiments described by Horner et al. (2002). The flow
conditions in figure 11 match those in figure 9, and certain features, such as the
entrainment from the left, are shown up more clearly in this way. This method
also captures the complete E1 entrainment, and shows via plots (e–g) that much of
the entrained fluid is subsequently lost. This is in keeping with the self-intersecting
turnstile mechanism mentioned in § 2, and will be explored further in the next
section.

By way of comparison, figure 12 uses the same method of visualization as figure 11,
but shows the behaviour when S̄ = 1.5 (with θ remaining at 30◦). In this case the
steady-state flow corresponding to the instantaneous value of S is always topologically
identical to that in figure 2(c). As before, the stream of dye splits as it encounters the
unstable manifolds of the interior saddle point D, and the fluid on the left follows the
path of the ‘transfer-jet’ between the two eddies in figure 2(c). When this stream of
fluid reaches the free surface on the right-hand side of the eddy region, a very small
portion of it continues out into the right-hand film, but most is entrained into the
right-hand eddy, along with some of the fluid which was originally in the left-hand
eddy and a substantial influx of fluid from the right-hand dye stream. Dyed fluid
travelling down the middle of the eddy region then enters the left-hand eddy, and the
cycle of entrainment and detrainment continues. Comparing figures 11 and 12, one
can see from the greater presence of black within the eddy region of figure 12 that
more fluid is exchanged when S̄ = 1.5 than when S̄ = 1.
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

Figure 11. Numerical simulation of a continuous source of tracers located upstream of the
eddy region. The flow conditions are as in figure 9.

A simple means of providing a more quantitative comparison of fluid exchange
rates is to repeat the seeded-eddy simulation of figure 9 and plot the number of
tracers remaining in the domain as a function of time. This is done in figure 13,
which is similar to the concentration plots presented by Rom-Kedar & Poje (1999).
In each curve the detrainment of fluid from the eddy region shows as a drop in the
tracer ‘population’, and each entrainment phase as a flat plateau (since there are no
tracers in the fresh fluid). Note that the plot gives the percentage of initial tracers
remaining within the domain rather than in the eddy region, since the end of the
domain is easier to define. This affects the results only by introducing a short time lag
between a particle leaving the eddy region and subsequently leaving the domain after
travelling within one of the films. The curves in figure 13 show a similar behaviour to
those obtained experimentally by Wierschem & Aksel (2004), who used an average
greyscale value to indicate the loss of fluorescent tracer from an eddy.

This may seem to be a fairly crude method of comparison, since no account is taken
of any connectivity between tracers, and therefore the volume of fluid exchanged is
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Figure 12. As figure 11, but for the asymmetric case S̄ = 1.5. The Hooke’s joint remained
at angle θ = 30◦, giving 1.299 � S � 1.725.

not directly measured. However, several fixed rectangular regions were set up in the
core of each eddy in order to monitor the density of tracers over time. This was
found to remain practically constant throughout each simulation, suggesting that the
number of tracers left in the domain (i.e. once the tracer population curves have
levelled out) is a reasonable indication of the volume of fluid which was not expelled
from the eddies. By comparison with the initial state, this in turn indicates the relative
volumetric transport rates out of the recirculation zone.

In most of the curves in figure 13 the first decrease in tracer population is much
larger than the rest, and this is consistent with the theoretical results of Rom-Kedar &
Poje (1999), who showed that for low-frequency periodic perturbations almost all fluid
which is entrained into a recirculation during each period is detrained in the following
period. Hence when observing a system in which all the fluid in the recirculation region
is dyed at some time t0, most of the dyed fluid which can be transported out of a
recirculation region is transported in the first period from t0. This behaviour is
certainly seen for the S̄ = 1.5 curves in figure 13. In fact, as described above, much of
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Figure 13. Percentage of initial points remaining inside the domain as a function of time for
different Hooke’s joint angles, θ : - - -, S̄ = 1; ——, S̄ = 1.5. The additional dotted line gives
the response when S̄ = 1.5 and θ is adjusted to give a free-surface response with the same
amplitude as the θ = 30◦ case.

the fluid which is entrained in one period is detrained during the same period. This is
a consequence of the relatively large amplitude and low frequency of the perturbation
produced by the free-surface movement. The reason why the S̄ = 1 curves do not
exhibit quite the same difference between the first and subsequent periods is partly
that in this case there is fluid exchange between the two eddies which make up the
recirculation zone. Hence, some of the fluid entrained and detrained in each period is
made up of fluid transferred between the eddies, which does not change the population
of tracer particles within the domain. However, there is also a modulation frequency
difference between the two cases, and the difference in speed of the modulated roll
affects the orbital frequency of fluid within the eddies. Modulation frequency has a
strong influence on the transport rates, and is discussed in more detail later.

In each case presented in figure 13 the rate of tracer loss decreases over time, such
that the curves level off. This indicates that an unmixed core remains in the eddy
region. In fact there are two cores, which – as is to be expected – surround the elliptic
stagnation points at the heart of each eddy. Figure 14 shows the positions of the
tracers after 10 periods of modulation with θ = 30◦. For comparison, the steady-state
streamlines corresponding to the extremes of speed ratio are overlaid. Note that the
tracers are plotted at phases for which the meniscus tip position matches that in
the unperturbed steady case. Note also that the plots are not to the same scale,
which is why the tracers in figure 14(b) appear less densely distributed. As can be
seen in figure 13, after 10 periods the population curves have not quite levelled out
completely, and so there are still some tracers (noticeably in the free-surface eddy in
figure 14b) which are orbiting the core and which will gradually work their way out
into the film. However, the shapes of the cores are easily distinguished.

From the results of figure 13, the asymmetric case, S̄ = 1.5, appears to be much
more amenable to transport enhancement by speed modulation, with almost all the
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(a) (b)

Figure 14. Positions, after 10 modulation periods, of tracers which were initially spread
uniformly (on a square grid) through the eddy region. The corresponding free-surface position
is shown as a dotted line. The overlaid streamlines represent the steady states corresponding
to the extremes of speed ratio produced by the Hooke’s joint modulation. The dashed and
solid lines refer respectively to the maximum and minimum speed ratio solutions in each case.
(a) S̄ = 1 and (b) S̄ = 1.5, with θ = 30◦ in each case.
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Figure 15. Effect of the Hooke’s joint angle, θ , on the dimensionless amplitude of the
free-surface response, δ, as calculated from the movement of the meniscus tip: - - -, S̄ = 1;
——, S̄ = 1.5. For comparison, the additional data points give the difference in free-surface
tip position between steady-state solutions corresponding to the extremes of S produced by
each θ for S̄ = 1 (squares) and S̄ = 1.5 (circles). Note that it is merely coincidence that the
squares should lie on the solid curve.

initial tracers evacuated after 10 periods at a Hooke’s joint angle of 40◦. This picture
is deceptive, however, because one must take into account the response of the free
surface to the speed modulation. For a given shaft angle, increasing S̄ increases the
range of speed ratio produced by (3.1), which in turn produces a larger amplitude, δ,
in the free-surface movement. Note that δ as used below is a dimensionless quantity,
and is scaled by L =

√
RH0 = 2.247 × 10−3 m (see also table 1). Figure 15 plots the



340 M. C. T. Wilson, J. L. Summers, N. Kapur and P. H. Gaskell

amplitude of the free-surface response as a function of θ for the two mean speed
ratios S̄ = 1 and 1.5. For comparison the graph also includes (as discrete symbols) the
difference in the meniscus tip position found by comparing the steady-state solutions
corresponding to the extremes of S produced by several Hooke’s joint angles. (Note
that the latter results for S̄ = 1 appear to lie on the solid curve corresponding to
S̄ = 1.5, but this is purely coincidental.) For each S̄ the transient response of the free
surface is rather less than the difference between the steady states, indicating that a
quasi-steady approach would not give a true representation of the flow, even at the
small modulation frequency used here. Figure 15 also illustrates how two different
values of θ could be chosen to give the same δ at the two speed ratios. The effect
of this compensation on the rate of tracer loss is given in figure 13 as the dotted
curve, which shows that after 10 modulation periods, a similar percentage of tracers
remains in the domain. Initially the rate of tracer loss is much greater for the S̄ = 1.5
case, though, due to the much smaller transfer of fluid between the eddies in the
asymmetric flow.

5.3. Mechanism of fluid exchange

The above visualizations and descriptions can be made clearer by calculating and
observing the invariant manifolds discussed in § 2. By way of example, this is done
here only for the eddy attached to the free surface in the S̄ = 1.5 case. Similar plots can
be constructed for the interior eddy. Figure 16 shows one period of the modulation
produced by a drive shaft angle of 20◦, and presents the unstable manifold associated
with point B , Wu

B , and the stable manifold of point C, Ws
C . The manifolds are

calculated by inserting at each timestep a new passive tracer positioned very close to
the relevant periodic orbit in the direction of the appropriate manifold. The tracers
are then advected forwards or backwards in time as appropriate to form the invariant
manifolds.

Figure 16(a) corresponds to a phase of ζ = 0, at which the free surface is at its
lowest position and the recirculation region, R0, is at its smallest. For clarity, only the
minimum length of the unstable manifold is shown, but Ws

C represents the evolution
over several periods. The primary intersection points (p.i.p.s) of the two manifolds
(see § 2) are indicated by small open circles, and the one nearest C in figure 16(a)
forms the boundary intersection point (b.i.p.). The boundary of R0 is composed of
the segment of Ws

C connecting C to the b.i.p., the segment of Wu
B connecting B to

the b.i.p., and the segment of the free surface connecting B and C. The entraining
turnstile lobe, LE , is bounded by the segments of Wu

B and Ws
C between the b.i.p. and

the next p.i.p. along Wu
B in the direction of B . This lobe encloses fluid which will enter

R0 during the ensuing modulation period. The other shaded lobe in figure 16(a) is
the detraining turnstile lobe, LD , which consists of fluid that will leave R0 during the
ensuing period. As explained in § 2, only fluid contained in these two lobes can enter
or leave R0 during this period. As anticipated, LD overlaps most of LE , meaning that
most of the fluid which enters R0 leaves again during the same modulation period.
This is a consequence of the large amplitude of the modulation relative to the area of
R0 and the long period of the modulation relative to the characteristic orbital period
of the fluid recirculating within R0.

The other sections of Ws
C in figure 16(a) which do not bound the turnstile lobes

form pre-images of LD , i.e. they define lobes containing fluid which will occupy the
shaded detraining lobe at some future iteration of the modulation. There are in fact
three pre-images of LD present in figure 16(a), but only parts of two of them can
be distinguished: the segment of Ws

C indicated by the asterisk forms part of the first
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Figure 16. A sequence showing the evolution of the stable and unstable manifolds which
define the free-surface eddy region. Here S̄ = 1.5 and θ = 20◦. The phase is zero in plots
(a) and (i ).

pre-image of LD , and the segment labelled a contains fluid which will form part of the
detraining lobe two periods later (after one period a maps to a′ – see figure 16i ). The
remaining parts of these lobes, and the third pre-image, are all compressed against
the stable manifold of point A, which divides fluid between the left- and right-hand
rolls. Note that here the unstable manifold is shown as a dashed line and the stable
one as a solid line (this is opposite to the usual convention; otherwise the graphical
package inappropriately renders the contorted dashed line as solid). The same effect is
seen with Wu

B in the later plots in figure 16 but the manifolds remain distinguishable.
To assist in visualizing the structure of the manifolds, a schematic is provided in

figure 17, where Wu
B is shown as in figure 16(a) and Ws

C is shown as in figure 16(i ).
The schematic illustrates how the pre-image of LD winds through the turnstile, further
overlapping LE . This can also be seen in figure 16(a), since part of LE is enclosed
by the segment of Ws

C labelled ∗. This provides a direct illustration of the above
discussion regarding the results of Rom-Kedar & Poje (1999) and the rate of tracer
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Figure 17. A schematic of the manifold structure corresponding to figure 16(a, i ) illustrating
the tortuous way in which the pre-image of the detraining turnstile lobe winds through the
turnstile. The secondary intersection point marked by an asterisk corresponds to that in
figures 16(a) and 16(i ).

loss from the eddy region: most fluid entrained into R0 is ejected again either within
the same period or the following period.

The sequence in figure 16 shows how the lobes evolve over the period. The evolution
is rather different from the fixed-cavity flow of Horner et al. (2002), since the free
surface is a stress-free boundary which allows fluid motion along it. Therefore as the
free surface moves outwards, the entraining lobe moves inwards and appears to ‘fill
up’ all the available space adjacent to the free surface and the segment of Wu

B leaving
B . However, manifolds cannot self-intersect or intersect other manifolds of the same
stability (see Horner et al. 2002), so LE can only approach and not merge with these
curves. As the free surface reaches its maximum extent (figure 16d ), the pre-image of
LE becomes visible, while LD starts to bulge out in the direction of the right-hand
film. This bulge grows as the free surface moves inwards, and the fluid contained in
LD is carried away and out of the domain. At the end of the period (figure 16i ) the
parts of LE which did not overlap LD lie within R0, but much of these entrained parts
lie within the new detraining lobe (as indeed they always have, due to the invariance
of manifold intersections) and so this fluid will be detrained during the following
period. Note that the absence of segment a of Ws

C in figure 16(i ) is merely because
too short a length of the manifold has been plotted.

Revisiting figures 9–12 in the light of figure 16 shows how the invariant manifolds
fully describe the mechanism of fluid exchange between the eddy and the surrounding
fluid in terms of the self-intersecting turnstile construction. Calculating the areas of
the turnstile lobes, and accounting for the overlap (Wiggins 1992), gives a measure of
the fluid transport rate (Rom-Kedar et al. 1990) produced by the modulation. This
approach is not particularly practical, however, if one wants to observe say the rate of
tracer loss from an eddy over several periods. To do this one would need to account
for all the intersections of the turnstile lobes with their images covering the period
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Figure 18. Magnitude of the free-surface response as a function of Strouhal number and
modulation amplitude: (a) S̄ = 1; (b) S̄ = 1.5. The curves are contours of equal δ, with values
indicated on the plot.

of interest. Rather than do this, Horner et al. (2002) used the unstable manifold to
calculate an area coverage, i.e. a percentage of their cavity’s area which was occupied
by lobes. This approach was also adopted experimentally using dye injection and
digital imaging.

A similar approach could be adopted here, as extended calculations of either Wu
B

or Ws
C would trace out the boundaries of the unmixed cores in the domain. However,

calculations of manifolds are computationally expensive as many tracer points are
needed to provide an accurate representation, especially when the manifolds are so
highly stretched, curved and folded. The attritional approach adopted above, involving
the depletion of tracers from an initially seeded region, is a much cheaper means of
obtaining the same result, since the number of ‘live’ tracers diminishes rather than
grows.

5.4. Frequency effects

In all the above the frequency of the modulation is constant for each value of S̄, since
the period of (3.1) is tied to the rotational speeds of the motors. From a computational
point of view, it is very easy to replace (3.1) with a purely sinusoidal modulation,

S(t) = S̄ + ε sin 2πt, (5.1)

where the dimensional frequency, ω, corresponding to the modulation in (5.1) can be
changed independently by varying the Strouhal number, Sr = ω

√
RH0/2πUC . Recall

that time is scaled by the period of the modulation, T = 2π/ω = L/UCSr. Since
there is a lag between a change in roll speed and the response of the free surface, the
frequency has a large (and nonlinear) effect on the amplitude, δ, of the free-surface
movement. To give an idea of this influence, figure 18 shows contours of equal δ in
amplitude–frequency (i.e. ε–Sr) space. As is to be expected, δ increases with increasing
ε and decreasing Sr. In the limit Sr → 0, δ tends to the difference in meniscus position
between steady states corresponding to S = S̄ ± ε, and δ → 0 as Sr → ∞. Note that in
this plot and all the remaining results, the Reynolds number and other dimensionless
parameters (except Sr) are as given in table 1.
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Figure 19. Effect of modulation frequency on the rate of tracer loss from the domain:
(a) Sr = 0.005; (b) Sr = 0.01; (c) Sr = 0.015; (d ) Sr = 0.02; (e) Sr = 0.03; (f ) Sr = 0.04;
(g) Sr = 0.05. Other parameters: S̄ = 1.5, ε = 0.1. Curves (a) and (b) are shown dashed simply
for clarity, to distinguish them from the solid curves that they cross. The right-hand graph
shows the unstable (dashed) and stable (solid) manifolds associated with points B and C (see
figure 2) for case (g). Note that the graphical package renders some sections of the dashed
curve as solid.

Taking a particular value of ε, the decrease in δ with Sr suggests that the sizes of
the unmixed cores in the domain should increase with Sr. However, Rom-Kedar &
Poje (1999) showed that for a periodic Hamiltonian system with a hyperbolic orbit
whose manifolds tangle, there exists a universal ‘flux function’ describing the frequency
dependence of the flux through the turnstile. The flux is defined as the area of the
entraining turnstile lobe divided by the period of the modulation (here the self-
intersection of the turnstile would have to be accounted for, Rom-Kedar & Wiggins
1990). The flux function has the form of a linear increase for small frequency and an
exponential decay for large frequency, and therefore features at least one maximum.
Hence for each low frequency there should be a corresponding high frequency which
yields the same flux. Rom-Kedar & Poje (1999) argued that the high frequency would
ultimately result in a greater overall transport of tracer from a given region because
the tracer depletion occurs over a larger number of periods, whereas at the low
frequency almost all the transport occurs over the first period, as discussed earlier.
This suggests that the size of the unmixed cores will be smaller for larger values of
Sr. The theory of Rom-Kedar & Poje (1999) is, however, derived for a system with a
constant perturbation amplitude, whereas here the presence of the free surface results
in a frequency-dependent amplitude.

To determine which of the above effects is dominant, the tracer depletion simulation
was repeated for modulation (5.1) and a range of Sr. The results are presented in
figure 19. The tracer depletion curves support the assertion of Rom-Kedar & Poje
(1999): the low-frequency curves (a) and (b) show a dramatic drop in tracer population
over the first period, then quickly level out, whilst the high-frequency curves show a
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remaining inside the domain after 30 periods of sinusoidal modulation: (a) S̄ = 1; (b) S̄ = 1.5.
The contour interval is 5 %.

more gradual depletion which continues over a greater number of periods. Thus there
is an optimum frequency which produces the most effective stirring, i.e. the smallest
unmixed cores.

By way of contrast to the earlier manifold plots (figure 16), the right-hand graph
in figure 19 shows the manifolds for the case S̄ = 1.5, ε = 0.1 and Sr = 0.05 (i.e.
corresponding to the curve g in figure 19). In this case the free-surface movement is
much smaller, resulting in thinner lobes, and the period of the modulation is much
shorter. Hence the lobes are also shorter, and fluid which is entrained is not able to
travel completely round the recirculation and exit again within the same modulation
cycle. Therefore the turnstile lobes do not intersect, and the structure matches that in
the schematic of figure 3(a).

Balasuriya (2005) has recently considered the optimization problem of determining
the form of modulation (subject to an upper bound) which delivers the maximum flux
for a given frequency in dynamical systems undergoing time-harmonic perturbations.
The analysis is based on the manipulation of invariant manifolds to maximize lobe
areas, and exploits the Melnikov function to obtain the signed distance between
manifolds. It therefore relies on the form of the perturbation to the Hamiltonian
being known explicitly. Similarly, the more specific optimization problem tackled
numerically by Noack et al. (2004) relies on a direct perturbation of the underlying
Hamiltonian system in order for control theory to be applied. In the present work
the form of the perturbation to the Hamiltonian is not known. Coupled with the
nonlinear dynamics of the free surface, this makes optimization of the perturbation
to achieve maximum transport a significant challenge.

While the optimization problem is beyond the scope of this initial study, figure 20
summarizes the influence of frequency and amplitude on transport out of the eddy
region for the sinusoidal perturbation considered here. The figure shows contours
giving the percentage of initial tracers remaining in the domain after 30 modulation
cycles (after which the curves in figure 19 have levelled out much more). The contours
show that for each amplitude there is one particular frequency which delivers the
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Figure 21. Contours showing the percentage change in film thickness as a function of
modulation frequency and amplitude for the case S̄ = 1.5: (a) film on constant-speed roll;
(b) film on modulated roll.

most effective transport, and that this frequency increases with amplitude. At high
frequencies the free surface does not ‘see’ the rapid changes in roll speed, and the
amplitude of the perturbation diminishes, with a consequent reduction in the overall
transport.

6. Implications for the industrial context
6.1. Modulation side effects

Given that the flow investigated here arises in the coating industry, it seems
appropriate to address the side effects of the modulations discussed above. The
particular concern is the impact upon the outgoing film thicknesses, since most coating
applications require films of uniform thickness (recall that in a practical situation a
substrate would be wrapped around one of the rolls so that it is continuously coated).
The modulations (3.1) and (5.1) will clearly produce a periodic disturbance on the
films, with a wavelength of � = 2πRΩ/ω = cL/Sr, where Ω is the angular velocity
of the roll, ω is the frequency of the modulation, and c = 1 or S̄ depending on the
roll. Figure 21 shows the amplitude of the disturbance as a function of ε and Sr when
S̄ = 1.5, with the (peak-peak) amplitude expressed as a percentage of the mean film
thickness for each roll. The two films show quite different responses. The contours
for the film on the unmodulated roll are the same shape as those for the meniscus
tip movement (figure 18b), which is perhaps not surprising given that the variation in
this film is almost in phase with the free-surface movement, i.e. the film thins as the
free surface moves inwards. On the other hand, the film on the modulated roll (which
varies roughly in antiphase to the other film – see figure 6a, b) varies more strongly
for frequencies in the middle of the range considered. The frequency producing the
largest disturbance does not correspond to that giving the greatest transport, however.

The percentage change in film thickness for each film is rather less than the
percentage change in roll speed. Whether or not such variations are acceptable will
depend on the application; some high-precision coating processes may require a wet
film thickness variation below 1 % to ensure a good quality dry film (Schweizer 1997).
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Once the films leave the coating bead, capillarity (and gravity, depending on the
substrate orientation) will act to help level the films (Kheshgi 1997), but this may
require more time than is available before the next stage in the continuous coating
process, particularly for long-wavelength perturbations. Orchard (1962) considered the
levelling by surface tension of a film of mean thickness H̄ , whose initial profile was
given by a Fourier series, and derived an exponential decay time, TL = 3µ�4/16π4γ H̄ 3

(� being the wavelength), valid for thin films with disturbances having a small
amplitude-to-wavelength ratio. Considering the film on the modulated roll (with
dimensionless mean thickness h̄m), this becomes

TL =

(
3S̄4

16π4h̄3
m

)(
µL

γ

)(
1

Sr

)4

, (6.1)

and one can see that small values of Sr will result in very long decay times. In fact,
for the experimental model rig and high-viscosity oil used here, and the range of Sr
in figure 21, TL is of the order 104 − 108 s, indicating that levelling due to surface
tension in any practical situation would be insignificant.

In addition to being directly applied to a substrate, the films generated by the
roll-pair considered here could instead be passed into the gaps between subsequent
rolls forming part of a much larger coating machine. In this case one would have to
explore the effects of a varying input flux in the subsequent gap to assess how the
disturbance is propagated through or perhaps diminished by further stages of the
process. In any case, it is clear that due consideration must be given to effects of any
modulation before it can be used for practical purposes.

6.2. ‘Counter-modulation’

For a given modulation frequency, the thicknesses of the two films leaving the domain
are primarily influenced by the relative speeds of the rolls (i.e. S = um/uc) and the
flux of fluid entering the domain through the nip (i.e. λ). However, λ is essentially
proportional to the average of the peripheral speeds of the two rolls,

λ ∝ ū = 1
2
(um + uc), (6.2)

and so one might ask if it is possible to introduce a second speed modulation, on roll
C, such that the variation in one or both films is reduced.

As far as the flux is concerned, it is evident from (6.2) that a second modulation
of equal amplitude but opposite phase would counter the first modulation, giving a
practically constant λ. Unfortunately this would also act to increase S, and would
therefore be unlikely to reduce the film thickness variations. Finding the correct phase
and amplitude of the second modulation is clearly not a trivial task, but a reasonably
effective counter-modulation can be found by replacing the single modulation (5.1)
with a modulation of amplitude 1

2
ε on each roll, i.e.

um = S̄ + 1
2
ε sin 2πt, (6.3)

uc = 1 + 1
2
ε sin 2π(t + φc), (6.4)

where φc is a phase difference between the two modulations. The effect of this dual
modulation on the film thickness variations and the size of the unmixed cores is
shown in table 2, where S̄ = 1.5, ε = 0.1, and Sr = 0.015.

The table shows that spreading the flow modulation over both rolls produces
a dramatic reduction in the variation of the film thickness on roll M , without a
correspondingly large increase in the size of the unmixed regions. By introducing a
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φc Roll M Roll C N30

.
0.0 1.9% 3.5 % 31.2%
0.1 1.2% 4.7 % 26.8%
0.2 1.5% 5.7 % 22.7%
0.3 2.3% 6.2 % 20.7%
0.4 3.1% 6.3 % 20.5%
0.5 3.6% 6.0 % 22.5%
− (5.1%) (3.9 %) (23.3%)

Table 2. Effect of modulation phase difference, φc , on film thickness variations and unmixed
core size when both roll speeds are modulated sinusoidally with amplitude 0.05 and Sr = 0.015
(S̄ = 1.5). The second and third columns give the amplitudes of the film thickness variations
expressed as a percentage of the mean film thickness on each roll. The fourth column, N30,
shows the percentage of tracers remaining in the domain after 30 modulation cycles starting
from an initial state where the recirculation region was uniformly seeded with tracers. For
comparison, the last line in the table gives the corresponding values for the case of a single
speed modulation of amplitude 0.1.

small phase difference between the two rolls, the variation in film thickness on roll M

can be reduced further, to just 1.2 %, but at the expense of a larger variation in the
other film thickness. The phase difference also improves the transport characteristics
of the dual modulation by reducing the size of the unmixed regions which remain in
the domain. This simple example demonstrates that, by careful choice of modulations,
effective stirring should be possible without excessive perturbation of at least one of
the films.

7. Conclusion
The effect of a periodic flow modulation on fluid transport from a recirculation

region bounded by a free surface has been explored using a numerical method
validated against experiments. The flow was modulated by continuously varying
the speed of one of the driving rolls, and in the experiments this was achieved
using a Hooke’s joint. When the drive speed is varied, the free surface changes
shape and position, and this non-tangential motion drives fluid exchange between
the recirculation region and the surrounding flow. The amplitude of the free-surface
motion is strongly dependent on the frequency of the modulation. At high frequencies
the free surface is unable to respond quickly enough for the changes in roll speed to
affect its position, and its motion is therefore limited. For small frequencies a much
larger response is seen, but the dynamics of the free surface mean that a quasi-steady
approach is not possible even for small frequencies. A full time-dependent simulation
is required.

Focusing on the eddy which is attached to the free surface, experimental and
numerical flow visualizations show that fluid is drawn into the eddy region along the
free surface as the surface moves outwards, thus increasing the volume of the eddy.
When the free surface returns, fluid is ejected along the free surface into the film on
the modulated roll. Calculations of the stable and unstable manifolds associated with
periodic points on the free surface reveal that for small frequencies fluid exchange
is governed by a self-intersecting turnstile mechanism, such that much of the fluid
entrained in a given modulation cycle is ejected during the same cycle. This is a
consequence of the relatively large perturbation compared to the size of the eddy,
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and the relatively high orbital frequency of fluid in the eddy, which allows entrained
fluid to travel completely round the eddy within half a modulation period. Higher
modulation frequencies do not permit the latter effect, even for large modulation
amplitudes, and for these cases the turnstile lobes do not intersect. Despite introducing
many complicating factors into the simulation of the flow, the free surface itself does
not play a part in the lobe dynamics, since the manifolds which lie along it cannot
tangle because the free surface is a material interface.

While manifolds provide a very clear picture of the fluid transport mechanism
over one period, they are impractical for the study of transport over several periods.
Instead, this behaviour is studied by observing the depletion of tracer particles
initially distributed uniformly throughout the region of interest. Results show a
consistency with the theoretical results of Rom-Kedar & Poje (1999) in that for small
frequencies most transport is complete after one modulation cycle, whereas for high
frequencies detrainment of tracers occurs at a more gradual rate but over a longer
time scale. By considering the percentage of tracers left after 30 modulation periods,
contours in frequency–amplitude space could be constructed, and these show that
for each amplitude there is a particular frequency which delivers the most effective
transport. This frequency increases slightly with amplitude. For high frequencies, the
corresponding decrease in the amplitude of the free-surface motion results in poor
transport.

The periodic modulation of the free-surface flow has been shown to offer enhanced
transport of fluid into and out of regions in which fluid is trapped in the unperturbed
state. However, a possible drawback of this approach from an industrial point of view
is the side effect on the liquid films produced by the flow. The modulation generates
a variation in film thickness, with the percentage change in thickness approximately
one quarter of the percentage change in roll speed. This variation in film thickness
can be substantially reduced, however, by introducing a carefully chosen second
modulation on the previously unmodulated roll. Though this work has focused on
a roll coating configuration, the methods described could equally well be applied to
other geometries and other types of modulation, for example a pulsed flow rate.
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